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We extend our previous analysis of the toy model that mimics the mode coupl-
ing theory of supercooled liquids and glass transitions to the out of equilibrium
dynamics. We derive a self-consistent set of equations for correlation and
response functions.
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1. INTRODUCTION

Recently we have introduced a mean field toy model that mimics the mode
coupling theory (MCT) of supercooled liquids and glass transitions with
trivial Hamiltonian. (1, 2, 3) Analyses were limited to the equilibrium dynam-
ics. An important feature of the model is that the strength of ‘‘hopping
processes’’ (4) that destroys the non-ergodic state of the ideal MCT (5, 6) can
be tuned so that nonergodic state is still allowed in some region of the
model parameter space. This implies that the so-called hopping processes
do not seem to be the same as thermally activated processes.

In order to obtain further insights into the nature of MCT we consider
the out of equilibrium dynamics of the model. In connection to this,



recently the out of equilibrium dynamics of the mean-field-type spin glass
models and other related glassy models was considered. (7) In particular, the
out of equilbrium dynamics of the spherical p-spin model, (8) represented by
the closed set of equations for the off-equilibrium two time correlation
function C(t, tw) and the response function G(t, tw), was analytically solved
in the long time regime. (9) The analytic solution has revealed interesting
features of out of equilibrium dynamics of the model. The system exhibits a
strong waiting time dependence in the relaxation of both C and G, i.e.,
aging behavior at low temperatures. Moreover, the fluctuation-dissipation
theorem (FDT), i.e., the relationship bewteen C and G in equilbrium, is
modified in an interesting way. Similar FDT violation have been observed
in the off-equilibrium dynamics of supercooled liquids in computer simula-
tions (10, 11, 12) and an experiment. (13)

We note that the all the out of equilbrium glassy features in the p-spin
and related models are driven, as in the equilibrium dynamics, by the dis-
sipative nonlinearity in the equation of motion which comes from the non-
linear Hamiltonian. In the present toy model, as we see below, there is no
dissipative nonlinearity since the Hamiltonian is trivial, i.e., gaussian
without disorder. Instead the equation of motion involves the non-dissipa-
tive, i.e., reversible mode coupling nonliearities which drives the slowing
down in the relaxation and the dynamic transition in the equilibrium
dynamics. Our model possesses the reversible nonlinearities since we had a
fluid in mind in constructing the model. Here we aim to see the out of
equilibrium dynamics of the model driven by these reversible nonlinearities.

As a first step in this direction we derive below the self-consistent
closed set of equations for five correlation functions and five response
functions. The method used is standard: the generating functional method
in which two fictitious external fields are introduced for each dynamical
variables entering the model. (14) But in view of more complications involv-
ing correlation and response functions of these variables we will sketch a
derivation. We indicate possibility of reducing these complicated equations
to the set of two correlation functions and two response functions.

2. TOY MODEL

Here we consider the toy model with M-component velocity-like b
variables and N-component density-like a variables, M being smaller than
N. We have shown that in the limit of M, NQ. with dg —M/N finite,
the parameter dg becomes a measure of hopping. (4) As a special case, if we
take dg=0, then we obtain the zero-hopping model for the variables a,
that is, the model is trivially non-ergodic. For dg=1 the hopping fully
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contributes and the system is always ergodic. For intermediate values of dg

we expect an ergodic to nonergodic transition at some value of T=T(dg).
In this paper, after introducing the model we consider off-equilibrium

dynamics that eventually involves 5 correlation functions and 5 response
functions.

Our toy model is described by the variables aj with j=1, 2,..., N, and
ba with a=1, 2,..., M which are sometimes abbreviated as x̂ which spans
the phase space of the model. The model is described by the following
Langevin equation

ȧi=Kiaba+
w

`N
Jijaajba

ḃa=−cba−w2Kjaaj−
w

`N
Jija(w2aiaj−Tdij)+fa

Ofa(t) fb(tŒ)P=2cTdabd(t− tŒ)

(1)

where the f’s is the thermal noise with zero mean and the angular bracket
is the thermal average over such noise, and the usual summation conven-
tion for repeated indices are used. Here and after we will use Roman
indices for the component of a and Greek for that of b. Here c gives a
decay rate of the variable ba and w is seen to give a measure of the
frequency of the oscillation of the variable aj.

For later purpose, we require that the matrix Kia satisfies KiaKib=dab.
It is then easy to show that the equilibrium stationary phase space distri-
bution of the Fokker–Planck equation corresponding to (1) is given by (1, 2)

D̂e(x̂) — cst .e−;
N
j=1

w2

2T a
2
j −;

M
a=1

1
2T b

2
a (2)

where cst . is understood to be a suitably chosen constant.
The mode-coupling coefficients Jija are considered to be static random

variables satisfying the following statistical properties:

Jija J=0,

JijaJklb J=
g2

N
[(dikdjl+dildjk) dab+Kib(Kkadjl+Kladjk)

+Kjb(Kkadil+Kladik)]

(3)

where · · · J is the average over the independent Gaussian distribution of the
J’s. Eventually we take the mean field limitM, NQ., keeping dg —M/N
finite.
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In writing the model equation the temperature and other model
parameters are fixed during time evolution, for example, in a situation after
the quench. Naturally the model equation is valid only in such a time
region.

3. ACTION INTEGRAL

In order to analyze the toy model in the limitM, NQ., we introduce
the following generating functional: (14)

Z{ha, ĥa, hb, ĥb} — F d{a} F d{b} F d{â} F d{b̂}

× exp 3 i F dt(haj aj+ĥaj âj+hbaba+ĥba b̂a)4

×eŜ0+ŜI (4)

where

Ŝ0 — F dt{iâi(ȧi−Kiaba)+ib̂a(ḃa+cba+w2Kiaai−fa)}(t)

ŜI — JjkaXjka (5)

Xjka — F dt
w

`N
{−iâjakba+ib̂a(w2ajak−Tdjk)}(t) (6)

In the above we have set the Jacobian of transformation of variables to
unity assuming the Itô calculus.4 In the limit M, NQ., we find that the

4 A consequence of choosing the Itô convention is the causality condition on the response
functions. This implies that when the responses of a(t) or b(t) to the disturbances â(tŒ) or
b̂(tŒ) occur simultaneously, the limit tŒQ t must be chosen in such a way that t is always
greater than tŒ.

last term −Tdjk in the integrand of (6) can be neglected, and will be
dropped from now on. That is, we take

Xjka=F dt
w

`N
{−iâjakba+iw2b̂aajak}(t) (7)
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We then notice that the replacements iâj Q (w2/T) aj, b̂a Q ba/T on the
rhs of (7) make this term vanish. Hence we can also rewrite (7) as

Xjka=F dt
w

`N
{−iãjakba+iw2b̃aajak}(t) (8)

where

iãj — iâj+
w2

T
aj, ib̃a — ib̂a+

1
T
ba. (9)

The quantities of interest are the out of equilibrium correlation functions5

5 The definitions of Cab and Cba and those of the G’s do not matter in the end. So we will use
the symmetrically defined ones.

Ca(t, tŒ) —
1
N

Oaj(t) aj(tŒ)P, Cab(t, tŒ) —
1
M
Kia Oai(t) ba(tŒ)P,

Cba(t, tŒ) —
1
M
KiaOba(t) ai(tŒ)P, Cb(t, tŒ) —

1
M

Oba(t) ba(tŒ)P

CKa (ttŒ) —
1
M

OaKa (t) a
K
a (tŒ)P, aKa —Kjaaj

(10)

and the response functions

Ga(t, tŒ) —
1
N

Oaj(t) iâj(tŒ)P, Gab(t, tŒ) —
1
M
KiaOai(t) ib̂a(tŒ)P,

Gba(t, tŒ) —
1
M
KiaOba(t) iâi(tŒ)P, Gb(t, tŒ) —

1
M

Oba(t) ib̂a(tŒ)P,

GKa (ttŒ) —
1
M

OaKa (t) iâ
K
a (tŒ)P, iâKa —Kjaiâj

(11)

We note that the new types of correlation and response functions CKa and
GKa are needed to obtain the closed set of equations for C’s and G’s for
M<N. ForM=N we have CKa=Ca and GKa=Ga.

Since we are here concerned with out-of-equilibrium situation we will
not use the time translation invariance nor the fluctuation-dissipation
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theorem (FDT).6 We now take averages of (6) over fa and the J’s where

6 The usual FDT takes the form where the response function is proportional to the time deri-
vative of the correlation function. But here in the case of gaussian Hamiltonian (15) the FDT
is given by

Ga(t− tŒ)=−h(t− tŒ)
w2

T
Ca(t− tŒ), Gab(t− tŒ)=−h(t− tŒ)

1
T
Cab(t− tŒ),

Gba(t− tŒ)=−h(t− tŒ)
w2

T
Cba(t− tŒ), Gb(t− tŒ)=−h(t− tŒ)

1
T
Cb(t− tŒ),

GKa (t− tŒ)=−h(t− tŒ)
w2

T
CKa (t− tŒ)

where h(t) is the usual step function equal to 1 for positive t and zero otherwise, the
appearance of which comes from the causality. Another property arising from the causality
plus the above FDT is the following for arbitrary X(t)=X(a(t), b(t), â(t), b̂(t)):

OÂ(t) X(tŒ)P=OX(t) Ã(tŒ)P=0 for t > tŒ

where A(t)=(a(t), b(t)) and the indices are suppressed for brevity. This fact is only limited
to equilibrium when h=ĥ=0. Hence OX(t) Ã(tŒ)P=0 for t > tŒ will not be used here. For
ĥ=0 and arbitrary h, however, the causality requires OÂ(t) X(tŒ)P=0 for t > tŒ, which will
be used later.

we use

Oe−i > dt b̂a(t) fa(t)P=e−cT > dt b̂a(t)
2

eJjkaXjka
J
=e

1
2 JjkaJlmb

JXjkaXlmb
(12)

Then we have

OeŜ0P — eS0, eŜI
J
— eSI (13)

where

S0 — F dt{iâi(ȧi−Kiaba)+ib̂a(ḃa+cba+w2KTaiai+cTib̂a)}(t),

SI —
g2

N
F dt F dtŒ h(t− tŒ) t̂ija(t)[(t̃ija(tŒ)+t̃jia(tŒ))

+KibKka(t̃kjb(tŒ)+t̃jkb(tŒ))+KjbKka(t̃kib(tŒ)+t̃ikb(tŒ))] (14)
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and

t̂ija(t) — t̂
a
ija(t)+t̂

b
ija(t), t̃ija(tŒ) — t̃

a
ija(tŒ)+t̃

b
ija(tŒ)

t̂aija(t) —
w

`N
(−iâiajba)(t), t̂bija(t) —

w3

`N
(ib̂aaiaj)(t)

t̃aija(tŒ) —
w

`N
(−iãiajba)(tŒ), t̃bija(tŒ) —

w3

`N
(ib̃aaiaj)(tŒ).

(15)

Here we remind that we can interchange t̂ija and t̃ija in ŜI, (6), as we
have noted in connection with (8) and (9). Therefore we can split SI into
the 4 contributions

SI —Saa
I +Sab

I +Sba
I +Sbb

I . (16)

where

Saa
I —
g2

N
F dt F dtŒ h(t− tŒ) t̂aija(t)[

{
t̃aija(tŒ)+t̃

a
jia(tŒ)

+KibKka(t̃
a
kjb(tŒ)+t̃

a
jkb(tŒ))+KjbKka(t̃

a
kib(tŒ)+
{
t̃aikb(tŒ))],

Sab
I —
g2

N
F dt F dtŒh(t− tŒ) t̂aija(t)[(t̃bija(tŒ)+t̃bjia(tŒ))

+KibKka(
{
t̃bkjb(tŒ)+
{
t̃bjkb(tŒ))+KjbKka(t̃

b
kib(tŒ)+t̃

b
ikb(tŒ))],

Sba
I —
g2

N
F dt F dtŒh(t− tŒ) t̂bija(t)[(t̃aija(tŒ)+t̃ajia(tŒ))

+KibKka(
{
t̃akjb(tŒ)+t̃

a
jkb(tŒ))+KjbKka(

{
t̃akib(tŒ)+t̃

a
ikb(tŒ))],

Sbb
I —
g2

N
F dt F dtŒh(t− tŒ) t̂bija(t)[(

{
t̃bija(tŒ)+
{
t̃bjia(tŒ))

+KibKka(t̃
b
kjb(tŒ)+t̃

b
jkb(tŒ))+KjbKka(t̃

b
kib(tŒ)+t̃

b
ikb(tŒ))]

(17)

Here the terms giving non-vanishing contributions in the equilibrium were
overbraced. But this is no longer enough in out of equilibrium situation as
we shall see. As an illustration we look at the first term of (17) or its
integrand Saa

I . That is

t̂aija(t) t̃
a
ija(tŒ)=

w2

N
[−iâi(t) aj(t) ba(t)][−iãi(tŒ) aj(tŒ) ba(tŒ)]

=w2Ndgiâi(t) iãi(tŒ) Ca(ttŒ) Cb(ttŒ)+· · · (18)
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where the ellipsis contains quantities like Oiâi(t) · · ·P which are absent for
h, ĥ=0 and also contains other fluctuation terms. Due to the presence of a
factor N in front of the second member of the rhs of (18), these fluctuation
terms disappear in the limit M, NQ. with a finite dg. We then analyze
each factor like t̂aija(t) t̃

a
ija(tŒ) in (17) in the limit M, NQ., where we only

impose the causality condition t \ tŒ reflected by h(t− tŒ) in (17) but not
FDT.

After tedious but straightforward algebra with h=0 we arrive at the
effective quadratic action given below. To simplify the expression we
introduce the following notation:7

7 Note ê signifies causality. Alternatively, this causality is taken care of by redefining the S’s
by absorbing h(t− tŒ) into them. Then the above integral is from −. to .. If desired one
can do the same for the response functions.

X é Y(t)=F
t

−.
dtŒ X(ttŒ) Y(tŒ)

In writing down the quadratic action below, for simplicity, we suppress
time arguments and indices for the variables a, b, so that for instance we
write K ·b for Kjaba in matrix notation. We also omit integral signs and é
for the moment. The total action is given by the following matrix form

Stot=Ŝeq+Seq+Soe

— (iâ, ib̂) · Ŵeq ·R
iâ
ib̂
S+(iâ, ib̂) ·Weq ·R

a
b
S

+(iâ, ib̂) ·WIoe ·R
a
b
S

(19)

where [eq] and [oe] stand for equilibrium and off-equilibriun, respec-
tively. Also note Ŝoe is absent. We have

Ŵeq — Ŵ0+ŴI (20)

Ŵ0 — R
0N 0NM

0MN cT1M
S (21)

ŴI — R
1N

T
w
2 Saa TSabK

T
w
2 SbaKT 1MTSbb

S (22)
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and furthermore,

Weq=W
0
eq+W

I
eq (23)

W0eq — R
1N“t −K
w2KT 1M(“t+c)

S (24)

WIeq — R
1NSaa KSab
SbaKT 1MSbb

S (25)

and

WIoe — R
1N(−Saa+DSaa−2DS

í
aa ) −(Sab+DSab) K

(−Sba+DSba−2DS
í
ba ) KT −1M(Sbb+DSbb)

S (26)

where 1N(1M) are the unit matrix of rank N(M), K is the N×M matrix
with the elements Kja and KT its transposed M×N matrix. All these
matrices are multiplied by a matrix whose ttŒ element is the delta function
d(t− tŒ). Also 0NM, 0MN are the 0 matrices of N×M, M×N, respectively.
Here the memory kernel S’s are defined by

Saa(ttŒ) —
g2w4

T
(dgCa(ttŒ) Cb(ttŒ)+(dg)2 Cab(ttŒ) Cba(ttŒ))

Sab(ttŒ) — −2
g2w4

T
dgCa(ttŒ) Cba(ttŒ),

Sba(ttŒ) — −2
g2w6

T
dgCa(ttŒ) Cab(ttŒ),

Sbb(ttŒ) —
2g2w6

T
Ca(ttŒ)2 (27)

The other types of kernels DS and DS í are defined as follows:

DSaa — g2w2(dgGaCb+(dg)2 CabGba) (28)

DS í
aa — g2w4(dgCaGb+(dg)2 CbaGab) (29)

DSab — −g2w2dg[CaGba+GaCba] (30)

DSbb — 2g2w4CaGa, DSba — −2g2w4dgCabGa (31)

DS í
ba — −2g2w6dgCaGab (32)

Note that every term of the DS’s contains one factor of the G’s and one
factor of C’s in contrast to the S’s, (27), each of which contains the two
factors of C’s.
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4. CORRELATION AND RESPONSE FUNCTIONS

We now proceed to response and correlation functions. We first intro-
duce correlation and response matrices C and G with sub-matrices
Caa — OaaP and Gaa — OaiâP etc. whose elements are OaaPit, jtŒ=Oai(t) aj(tŒ)P
etc. Thus the entire correlation and response matrices are written as

C — RCaa Cab
Cba Cbb
S, G — RGaa Gab

Gba Gbb
S (33)

The formal matrix equations determining correlation and response matrices
take the form which are obtained from the effective action defined through
(19) to (26):

W ·G=1 (34)

W ·C=(Ŵeq+Ŵ
†
eq) ·G

† (35)

W — Weq+W
I
oe (36)

4.1. Response Function

We first take up the response functions. The equations for them are
written in terms of submatrices as follows where equilibrium and off-equi-
librium parts are separated:

(“t+Saa) Gaa−(1−Sab) K ·Gba

+Q(−Saa+DSaa−2DS
í
aa ) Gaa−(Sab+DSab) K · Gba)R

=1N (37)

(“t+Saa) Gab−(1−Sab) K ·Gbb

+Q(−Saa+DSaa−2DS
í
aa ) Gab−(Sab+DSab) K · Gbb)R

=0NM (38)

(w2+Sba) KT ·Gaa+(“t+c+Sbb) Gba

+Q(−Sba+DSba−2DS
í
ba ) KT ·Gaa−(Sbb+DSbb) ·GbaR

=0MN (39)

(w2+Sba) KT ·Gab+(“t+c+Sbb) Gbb

+Q(−Sba+DSba−2DS
í
ba ) KT ·Gab−(Sbb+DSbb) ·GbbR

=1M (40)
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Here Q · · · R are off-equilibrium parts which vanish in equilibrium due to the
FDT which makes all the DS’s and DS í equal to −S’s. From this we can
deduce the equations for 5 response functions in the following manner.

We define the following notation valid for arbitrary matrix X, Y of
ranks N, M, respectively:

tra X —
1
N

C
j
Xjj, trb Y —

1
M

C
a

Yaa

We first apply tra · · · to (37), next trb KT · · · to (38), then tra K · · · to (39),
also trb · · · to (40), and finally trb KT · · ·K to (37).

We then end up with the following set of 5 equations for 5 response
functions where again equilibrium and off-equilibrium parts are separated:

[(“t+Saa) Ga−(1−Sab) dgGba](ttŒ)

+Q(−Saa+DSaa−2DS
í
aa ) Ga−(Sab+DSab) d

gGbaR(ttŒ)

=d(t− tŒ) (41)

[(“t+Saa) Gab−(1−Sab) Gb](ttŒ)

+Q(−Saa+DSaa−2DS
í
aa ) Gab−(Sab+DSab) GbR(ttŒ)

=0 (42)

[(w2+Sba) G
K
a+(“t+c+Sbb) Gba](ttŒ)

+Q(−Sba+DSba−2DS
í
ba ) G

K
a −(Sbb+DSbb) GbaR(ttŒ)

=0 (43)

[(w2+Sba) Gab+(“t+c+Sbb) Gb](ttŒ)

+Q(−Sba+DSba−2DS
í
ba ) Gab−(Sbb+DSbb) GbR(ttŒ)

=d(t− tŒ) (44)

[(“t+Saa) G
K
a −(1−Sab) Gba](ttŒ)

+Q(−Saa+DSaa−2DS
í
aa ) G

K
a −(Sab+DSab) GbaR(ttŒ)

=d(t− tŒ) (45)

4.2. Correlation Functions

We start with the formula (35) where the lhs are the same as those of
(37) to (40) except that the G’s are replaced by the C’s. Thus we need to
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consider only the rhs. Note that the rhs is the same as the equilibrium case
if G†(ttŒ) is given. G†(ttŒ) in terms of submatrices is given by

G†(ttŒ)=ROiâ(tŒ) a(t)P Oiâ(tŒ) b(t)P
Oib̂(tŒ) a(t)P Oib̂(tŒ) b(t)P

S (46)

Also one can work out

(Ŵeq+Ŵ
†
eq)(ttŒ)

=R
T
w
2 [Saa(ttŒ)+Saa(tŒt)] 1N, T[Sab(ttŒ)+

1
w
2 Sba(tŒt)] K

T[ 1
w
2 Sba(ttŒ)+Sab(tŒt)] KT, T[2cd(t− tŒ)+Sbb(ttŒ)+Sbb(tŒt)] 1M

S

=R2
T
w
2 Saa(ttŒ) 1N, 2TSab(ttŒ) K

2TSab(tŒt) KT, 2T[cd(t− tŒ)+Sbb(ttŒ)] 1M
S (47)

The last equality in (47) is due to the following symmetric properties of S’s
under exchange of two times: Saa(t, tŒ)=Saa(tŒ, t), Sab(t, tŒ)=

1
w
2 Sba(tŒ, t),

and Sbb(t, tŒ)=Sbb(t, Œt). These follow directly from Ca(t, t)=Ca(tŒ, t),
Cb(t, t)=Cb(tŒ, t), and Cab(t, tŒ)=Cba(tŒ, t). The matrix equation (35) can
be split into 4 submatrix equations as follows where the lhs is abbrevitated
as “tCaa(ttŒ)+· · · etc.

“tCaa(ttŒ)+· · ·=2
T
w2
Saa(t•)Oiâ(•) a(tŒ)P

+2TSab(t•) K ·Oib̂(•) a(tŒ)P, (48)

“tCab(ttŒ)+· · ·=2
T
w2
Saa(t•)Oiâ(•) b(tŒ)P

+2TSab(t•) K ·Oib̂(•) b(tŒ)P, (49)

“tCba(ttŒ)+· · ·=2TSab(•t) KT ·Oiâ(•) a(tŒ)P

+2T[cd(t−•)+Sbb(t•)]Oib̂(•) a(tŒ)P, (50)

“tCbb(ttŒ)+· · ·=2TSab(•t) KT ·Oiâ(•) b(tŒ)P

+2T[cd(t−•)+Sbb(t•)]Oib̂(•) b(tŒ)P (51)

The rhs are the same with the equilibrium case.
We are ready to find the rhs of the equations for correlation functions,

which can be done following the same procedure as for the G’s. Thus we
first apply tra · · · to (48), next trb KT · · · to the rhs of (49), then tra K · · · to
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the rhs of (50), also trb · · · to the rhs of (51), and finally trb KT · · ·K to the
rhs of (48).

Results are summarized below in the form of 5 self-consistent equa-
tions for 5 correlation functions:

[(“t+Saa) Ca−(1−Sab) dgCba](ttŒ)

+Q(−Saa+DSaa−2DS
í
aa ) Ca−(Sab+DSab) d

gCbaR(ttŒ)

=2
T
w2
Saa(t•) Ga(tŒ•)+2TSab(t•) dgGab(tŒ•), (52)

[(“t+Saa) Cab−(1−Sab) Cb](ttŒ)

+Q(−Saa+DSaa−2DS
í
aa ) Cab−(Sab+DSab) CbR(ttŒ)

=2
T
w2
Saa(t•) Gba(tŒ•)+2TSab(t•) Gb(tŒ•), (53)

[(w2+Sba) C
K
a+(“t+c+Sbb) Cba](ttŒ)

+Q(−Sba+DSba−2DS
í
ba ) C

K
a −(Sbb+DSbb) CbaR(ttŒ)

=2TSab(•t) G
K
a (tŒ•)+2T[cd(t−•)+Sbb(t•)] Gab(tŒ•), (54)

[(w2+Sba) Cab+(“t+c+Sbb) Cb](ttŒ)

+Q(−Sba+DSba−2DS
í
ba ) Cab−(Sbb+DSbb) CbR(ttŒ)

=2TSab(•t)] Gba(tŒ•)+2T[cd(t−•)+Sbb(t•)] Gb(tŒ•), (55)

[(“t+Saa) C
K
a −(1−Sab) Cba](ttŒ)

+Q(−Saa+DSaa−2DS
í
aa ) C

K
a −(Sab+DSab) CbaR(ttŒ)

=2
T
w2
Saa(t•) G

K
a (tŒ•)+2TSab(t•) Gab(tŒ•) (56)

The 5 equations (41)–(45) and 5 equations (52)–(56) constitute 10
equations that self-consistently determine 5 correlation functions and 5
response functions. Note the rhs of (52)–(56) are the same as in equilibrium
case. The lhs again have been split up into equilibrium and nonequilibrium
portions as we have done in (41)–(45).

We now give several comments related to the set of equations
(52)–(56):

• So far we have considered a general out of equilibrium situation
where the model parameter remains constant. Now we specify the condi-
tion to meet a typical aging experiment. We then suppose that a system in
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some equilibrium state is quenched at the time t=0 and starts to evolve
into another equilibrium state which characterizes the model parameters.
We let the system age till some time tw( > 0), and we measure at a later
time t( > tw). This would mean that in the above equations we should take
tŒ=tw and the time integrals denoted by • — s should be over the region
s > 0, which is further limited by the causality conditions on the S’s and
the G’s. Thus each integral in the equations of the response functions,
(41)–(45), is in the interval tw < s < t. Similarly, each integral in the lhs of
the equations for the correlation functions, (52)–(56), is in the interval
0 < s < t whereas each integral in the rhs is in the interval 0 < s < tw. We
then observe that the rhs of (52) to (56) are the source of contributions to
the correlation functions from thermal noise generated after the quench.
Note that the functions that multiply the G(tŒ•)’s in the rhs of (52) to (56)
are the correlation functions of renormalized thermal noises. See the equa-
tions (25) of ref. 2.

• In the discussion above we have not considered effects of the initial
condition at the time of quench, say, t0. (16) This can be studied by inserting
the properly normalized weight factor proportional to exp(−H/kBT0)
where H is the system Hamiltonian and T0 is the initial temperature. For
spin glass cases including Potts or p-spin systems, H contains quenched
random interaction parameters, which have to be included in averaging the
exponential of the action integral over such quenched random parameters
contained in the action integral. This results in additional terms in the final
effective action. In our toy model, this complication is absent because the
Hamiltonian is free from quenched disorder. The initial condition enters
only through the initial values of the correlation functions, that is,
Ca(t=0, tw=0)=T0/w2, etc.

• If we take all the DS’s and DS í equal to −S’s, consequences of
FDT, we recover the equilibrium equations. In this case the rhs of 5 equa-
tions (52)–(56) must vanish for t > tŒ because of the FDT which tells that
the G’s to be proportional to the C’s. The direct verification of this follows
if we note that in equilibrium tw can be shifted to 0. This makes the inte-
gration interval of s, and hence the rhs of (52) to (56) to vanish.

• No DS í
ab appears in constrast to DS í

ba , which is due to asymmetric
way a and b variables enter dynamics.

• No CKa and GKa appear in the S’s. One can see this by inspecting the
derivations of (19) to (26). We see that no terms containing the combina-
tions aKa (t) a

K
a (tŒ), a

K
a (t) iâ

K
a (tŒ) with aKa —Kjaaj, iâ

K
a —Kjaiâj appear.
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5. CONCLUDING REMARKS

In the foregoing sections we have derived the exact self-consistent
equations for correlation functions and response functions for our toy
model which, in some sense, is complementary to the works of Latz (17) who
studied the microscopic fluid system.

The set of ten equations of our self-consistent scheme would be too
complicated for further analyses at this time. Now, the velocity-like
b-variables can be made rapidly decaying by choosing a sufficiently large
value for c. In particular, this gives rise to a possibility of adiabatically
eliminating the velocity-like variables as we have done to derive a
Fokker–Planck type equation for the probability distribution function of
a-variables only in refs. 2 and 3. We have recently examined this problem
for the simpler equilibrium case of refs. 2 and 3. Even in this case we are
finding subtle points that require a multiple-time-scale analysis. (18)

Although our ultimate aim is to analyze the behavior of the equations
found in this paper, their complexity requires us to first look at limiting
cases with possible simplifications of the equations. This is deferred to
future investigations.
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